≥690
770~940
≥18
-20~-60
≥69
该表中的数值与数学公式VET=0.1σγ,是相一致的,也是目前各国船级社都采用的。笔者认为,VET=0.1σγ的适用范围不是无限的,而是有一定限制的。表中所列的690MPa和-60℃下69 J的强韧性配合指标已经是上限范围了,再进一步提高强度和冲击功的双重要求将是难以实现的。这是金属材料本身的性能所决定的,强度和韧性是要相互制约的。
在焊缝韧性指标上,有的规范不是这样要求的,它对各种强度级别的焊缝,都要求相同的韧性水平。如潜艇用钢,按照日本防卫厅规格〔6、7〕,对各种强度级别的焊条或焊丝的熔敷金属,都要求-50℃下的冲击吸收功不小于27 J;其焊缝金属的屈服强度包括460,630,800和940MPa四个等级,其焊接方法适用于焊条电弧焊、埋弧焊、MIG焊等。除了对熔敷金属的冲击吸收功有指标要求外,对焊接接头还要进行落锤试验,根据屈服强度等级和试板厚度选用规定的打击功,要求在-50℃下不发生试样断裂。从这两个方面进行韧性考核应是更为科学的。
美国军标(MIL)对潜艇用焊接材料的韧性考核,有些方面与日本一致,但也有不同之处。对熔敷金属的韧性考核,早期也是采用夏比V形冲击试验,要求-50℃下的冲击吸收功不小于27,47或68 J,这些冲击吸收功的提高不是因为强度的提高而相应提高,它是根据焊接材料的韧性储备等因素来确定的。后来又改为动态撕裂试验(DT试验),常用的试样厚度约为16mm(5/8吋),试样的宽度和长度分别为41mm和180mm;对裂纹源缺口的加工有着更严格的要求。试验温度为30℉(约为0℃),撕裂功的*值要求为610,645,680及780 J(450,475,500和575 ft-1b)。这些数值的确定也不是与强度的提高成线性关系,而与材料的韧性储备有直接关系,例如,屈服强度大于等于920MPa级的焊缝DT值要求645 J(475 ft-1b),而屈服强度大于等于700MPa级的焊缝,则要求其DT值≥780 J(575 ft-1b)。曾有几年时间内,夏比V形冲击试验和动态撕裂试验两者并用,后来就只采用动态撕裂试验一种方法了。
在焊接接头的韧性考核方面与日本截然不同,美国采用的是爆炸试验〔8〕,试板厚度都为25mm(1吋)或38mm(1.5吋),对接焊后成为正方形,边长分别为510mm或640mm,焊缝在中心部位。试验温度为30℉(约为0℃),经过3次爆炸后,希望厚度减薄率达到7%,要求不产生碎片;允许有穿过整个厚度的裂纹,但裂纹不应扩展到支撑区之内。美国军标将这种方法定为认可试验或鉴定试验,只有通过此种试验的焊接材料才能用于潜艇建造。一旦试验被通过,只要焊接材料的焊芯成分、药皮配方和原材料、制造技术和工艺等不作改变,就不再进行此项试验,只进行熔敷金属的韧性检验(夏比V形或动态撕裂试验),而且这种韧性检验的目的主要是控制焊接材料的质量稳定性。故熔敷金属的吸收功可以认为是控制焊材产品质量的相对判剧。当某种焊接材料用于船舶、桥梁、压力容器、车辆、高架建筑等具体结构时,应根据结构的特征、受力情况(是静载还是动载、低周疲劳还是高周疲劳)、环境条件等,提出具体要求,有的还要求作特殊的评定试验,同时将其符合安全要求的熔敷金属韧性指标确定下来。既不是韧性指标越高越好,也不可为了降低成本而降低对韧性的要求。用钢材的韧性指标来要求焊接材料也不完全是合理的,因为钢材经焊接之后,其热影响区中的粗晶区因晶粒明显长大,使韧性大幅度下降,所以为了保证热影响区有好的韧性,应该对母材韧性有更高的要求。
目前,国内外的焊接材料标准都是由焊接材料标准化机构制定出来的。高强钢用焊接材料的强度级别虽然不完全一致,但各种强度级别下的熔敷金属韧性指标是相同的,主要有两个体系〔9〕:一是欧洲体系,冲击吸收功要求≥47 J;太平洋周围*,如美国、*、日本、韩国等,则采用另一个体系,即冲击吸收功要求大于27 J。2000年以后,国际标准化组织(ISO)同时认可了这两个体系,将其按A、B两个体系并列于同一个标准之中。如 ISO18275-2005,ISO16834-2006和ISO18276-2005,分别是高强钢用的焊条、实心焊丝和药芯焊丝系标准,在这3个标准的A体系中统一把熔敷金属的屈服强度划分成如下5个等级,即550,620,690,790和890MPa级;而熔敷金属的冲击吸收功不随强度等级变化,它是一个固定数值,即A体系要求AkV≥47J;B体系要求AkV≥27 J。但是,在同一个冲击功条件下又分成若干个试验温度,通常有+20,0,-20,-30,-40,-50,-60,-70和-80℃。可根据结构的使用温度或对韧性储备的要求来选择试验温度,以满足对韧性的不同需要。例如,在我国南方江河中运行的船舶,其使用环境温度较高,可选用较高的试验温度;在北方江河中运行的船舶,其使用环境温度较低,应选择较低的试验温度。有些结构承受动载荷或疲劳载荷,与同一地区只承受静载荷的结构相比,可采用相同强度的焊材,但在韧性方面应有更大的储备,以保证动载荷或疲劳载荷下仍能安全运行,这时一定要选择在更低的试验温度下能满足47 J或27 J冲击吸收功要求的焊接材料。
3 结 论
在焊接接头强度匹配方面,对于低强度的钢种,可采用等强或超强匹配;对于高强度的钢种,宜采用等强或低强匹配,超强匹配是不利的。在焊缝韧性指标方面,有如下几种情况,一种是随着焊缝强度的提高对韧性的要求也提高;另一种是对各种强度级别的焊缝都要求相同的冲击吸收功,但试验温度是变化的,产品的使用条件越苛刻,相对应的试验温度越低;还有一种是对冲击吸收功和试验温度的要求都相同,但还要对焊接接头进行落锤或爆炸等试验,并以此作为认可试验。
参考文献
〔1〕Pelline W S..结构完整性原理〔M〕.国防工业出版社,1983。
〔2〕佐藤邦彦。溶接工业〔M〕.日本:理工学社,1979。
〔3〕张玉凤。静载下焊缝强度匹配对结构抗断裂性能影响的研究〔J〕.天津*学报,1985(3):13-18。
〔4〕九田一久。先进钢技术に关する日来共同研究につぃて〔J〕.防卫技术ツャ-ナル.2000(8),5-11。
〔5〕陈伯蠡。金属焊接性基础〔M〕。北京:机械工业出版社,1982,200-209。
〔6〕NDSZ 3001 调质高张力钢用被覆ア-ク溶接棒〔S〕。1975。
〔7〕NDSZ 3004 舰船用超高张力钢用被覆ア-ク溶接棒〔S〕。1983。
〔8〕上田修三著。荆洪阳译。结构钢的焊接〔M〕。北京:机械工业出版社,2004,338-340。
〔9〕朴东光。焊接领域的标准化及合格评定〔J〕。焊接,2006(6),27-34。